Welcome to Our Website

프리즘

삼각 프리즘,빛을 분산;파도 표시를 설명한 다른 파장의 빛입니다. (보려면 클릭 애니메이션)

빛의 변화 속도로 움직 하나의 매체에서 다른(예를 들어,공기의 유리 프리즘). 이 속도 변화로 인해 빛이 굴절되어 다른 각도로 새로운 매질에 들어갑니다(호이겐스 원리)., 의 정도의 굽힘등의 경로에 따라 각 사건 빔의 빛으로,표면에서의 비율이 굴절율의 두 개의 미디어(스넬의 법률). 많은 물질(유리와 같은)의 굴절률은 사용되는 빛의 파장 또는 색,분산으로 알려진 현상에 따라 다릅니다. 이렇게 다른 색상의 빛을 굴절과 다르게 남 prism 다른 각도에서 만드는 유사한 효과 무지개. 이것은 백색 빛의 광선을 색깔의 그것의 구성 스펙트럼으로 분리하기 위하여 이용될 수 있습니다., 비슷한 분리가 비누 거품과 같은 무지개 빛깔의 물질로 발생합니다. 프리즘은 일반적으로 회절 격자보다 훨씬 큰 주파수 대역폭에 걸쳐 빛을 분산시켜 광범위한 스펙트럼 분광학에 유용합니다. 또한 프리즘은 모든 격자가 가지고있는 스펙트럼 순서가 겹쳐서 발생하는 합병증을 겪지 않습니다.

프리즘은 때때로 분산보다는 표면에서의 내부 반사에 사용됩니다., 프리즘 내부의 빛이 충분히 가파른 각도로 표면 중 하나에 닿으면 총 내부 반사가 발생하고 모든 빛이 반사됩니다. 이것은 프리즘을 일부 상황에서 거울의 유용한 대체물로 만듭니다.

각도 편차 및 분산

선 각도 편차 및 분산을 통해 프리즘에 의해 결정될 수 있습니다 추적 샘플레이를 통해 요소를 사용하여 스넬의 법에서 각 인터페이스입니다., 를 위한 프리즘시 오른쪽에 표시된 각도에 의해 주어진

θ0’=벗어났습니다(n n0 1 죄⁡θ0)θ1=α−θ0’θ1’=벗어났습니다(n1n2 죄⁡θ1)θ2=θ1’−α{\displaystyle{\을 시작{정렬}\타’_{0}&=\,{\text{벗어났습니}}{\큰(}{\frac{n_{0}}{n_{1}}}\,\죄\타_{0}{\큰)}\\\타_{1}&=\alpha-\타’_{0}\\\타’_{1}&=\,{\text{벗어났습니}}{\큰(}{\frac{n_{1}}{n_{2}}}\,\죄\타_{1}{\큰)}\\\타_{2}&=\타’_{1}-\alpha\끝{정렬}}}., δ=θ0+θ2=θ0+벗어났습니다(n 죄⁡)−α{\displaystyle\delta=\타_{0}+\타_{2}=\타_{0}+{\text{벗어났습니}}{\큰(}n\n,\죄{\큰}{\큰)}-\alpha}δ≈θ0−α+(n) =θ0−α+n α−θ0=(n−1)α. {\displaystyle\delta\approx\theta_{0}-\alpha+{\Big(}n\,{\Big}{\Big)}=\theta_{0}-\alpha+n\alpha-\theta_{0}=(n-1)\alpha\.}

편차는 각도에 따라 달라 파장을 통해 n,그렇게 얇은 프리즘 편차를 각 파장에 따라서 달라지는 것에 따라

δ(λ)≈α{\displaystyle\델타(\lambda)\약\alpha}.

답글 남기기

이메일 주소를 발행하지 않을 것입니다. 필수 항목은 *(으)로 표시합니다